Ad Code

Responsive Advertisement

Updates

6/recent/ticker-posts

SOILS AND PALAEOSOLS

 Soils

A soil is formed by physical, chemical and biological processes that act on sediment, regolith or rock exposed at the land surface (Retallack 2001). Collectively these soil-forming processes are known as pedogenesis. Within a layer of sediment the principal physical processes are the movement of water down from or up to the surface and the formation of vertical cracks by the shrinkage of clays. Chemical processes are closely associated with the vertical water movement as they involve the transfer of dissolved material from one layer to another, the formation of new minerals and the breakdown of some original mineral material. The activity of plants is evident in most soils by the presence of roots and the accumulation of decaying organic matter within the soil. The activity of animals can have a considerable impact, as vertebrates, worms and insects may all move through the soil mixing the layers and aerating it.

Soils can be classified according to (Mack et al. 1993): .

the degree of alteration (weathering) of the parent material; .

 the precipitation of soluble minerals such as calcite and gypsum;

oxidising/reducing conditions (redox conditions), particularly with respect to iron minerals;
. the development of layering (horizonation);
. the redistribution of clays, iron and organic material into these different layers (illuviation);
.
the amount of organic matter that is preserved.
 

Twelve basic types of soil can be recognised using the US Soil Survey taxonomy (Retallack 2001) (Fig. 9.24). Some of these soil types can be related to the climatic conditions under which they form: gelisols indicate a cold climate whereas aridisols are characteristic of arid conditions, oxisols form most commonly under humid, tropical conditions and vertisols form in subhumid to semi-arid climates with pronounced seasonality. Particular hydrological conditions are required for some soils, such as the waterlogged setting that histosols (peaty soils) form in. Other types are indicative of the degree of the maturity of the soil profile (and hence the time over which the soil has developed); entisols are very immature and inceptisols show more development, but are less mature than the other types lower in the list. The type of vegetation is an important factor in some cases: spodosols, alfisols and ultisols are soils formed in forests, whereas mollisols are grassland soils. Finally, the formation of andisols is restricted to  volcanic substrates.


                                               Fig - Twelve major soil types

Palaeosols
A palaeosol
is a fossil soil. Many of the characteristics of modern soils noted above can be recognised in soils that formed in the geological past (Mack et al. 1993; Retallack 2001). These features include the presence of fossilised roots, the burrows of soil-modifying organisms, vertical cracks in the sediment and layers enriched or depleted in certain minerals. The study of palaeosols provides important information about ancient landscapes and in particular they can indicate the palaeoclimate, the type of vegetation growing and the time period during which a land surface was exposed.

The precipitation of calcium carbonate within the soil is a conspicuous feature of some aridisols that form in semi-arid to arid climates. These calcrete soils form by the movement of water through the soil profile precipitating calcium carbonate as root encrustations (rhizocretions) and as small soil nodules (glaebules) (Wright & Tucker 1991). The nodules grow and coalesce as precipitation continues to form a fully developed calcrete, which consists of a dense layer of calcium carbonate near to the surface with tepee structures, i.e. domes in the layer formed by the expansion of the calcium carbonate as it is precipitated (Allen 1974) (Fig. 9.25). The stages in the development a of

calcrete soil profile are easily recognised in palaeosols, so if the rate of development of a mature profile can be measured, the time over which an ancient profile formed can be estimated (Leeder 1975).

The passage of time can also be indicated by other palaeosol types: entisols and inceptisols indicate that the time available for soil formation on a particular surface was relatively short, whereas other, more mature categories of palaeosol require a longer period of exposure of the surface. These distinctions become useful when attempting to assess rates of deposition on, for example, a floodplain surface: entisols would indicate relatively rapid deposition, with little time for soil development before flooding deposited more sediment on the surface, whereas a well-developed spodosol, alfisol or ultisol suggests a much longer period of time before the surface was covered with younger sediment. However, it should be noted that the time taken for any soil profile to develop varies considerably with temperature, rainfall and the availability of different minerals so time estimates are always relative, not absolute. Also, soil profiles can become complicated by the superimposition of a younger profile over an older one(Bown & Kraus 1987).

Some types of modern and fossil soils have been given particular names. For example, seatearths are histisols, argillisols or spodosols that are common in the coal measures of northwestern Europe and North America (Percival 1986). They are characterised by a bed of organic matter underlain by a leached horizon of white sandstone from which iron has been washed out. Laterites are oxisols that are the product of extensive weathering of bedrock to form a soil that consists mainly of iron and aluminium oxides: examples of laterites may be found in the stratigraphic record as strongly reddened layers between basalt lava flows and provide evidence that the eruption was subaerial. Iron-rich oxisols that become cemented are known as ferricretes and they are a type of hardened soil profile called a duricrust. Duricrusts are highly resistant surfaces that develop over very long time periods (e.g. they are found associated with major unconformities; Retallack 2001); as well as iron-rich forms there are records of silcretes, which are silica-rich.

Identification of a palaeosol profile is probably the most reliable indicator of a terrestrial environment. Channels are not unique to the fluvial regime because they also occur in deltas, tidal settings and deep marine environments, and thin sheets of sandstone are also common to many other depositional settings. However, sometimes the recognition of a palaeosol can be made difficult by diagenetic alteration (18.2), which can destroy the original pedogenic features.




Post a Comment

0 Comments

Ad Code

Responsive Advertisement